탄소 배출 없는 사회의 실현에 기여하기 위한 Yokogawa의 노력

Yuki Onodera *1
Toyohiro Jinno *1

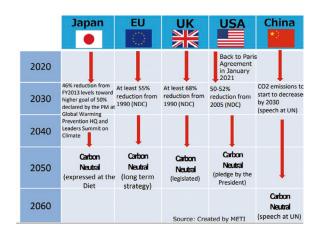
Hitomi Ueda^{*1} Inwoo Jang^{*1} Takahito Yamashita^{*1} Hironori Hayashizaki^{*2}

기후 변화 문제의 중요성이 증가함에 따라 탈탄소 경영, 환경 회계 및 ESG (Environment, Social, and Governance - 환경, 사회 및 지배구조) 투자에 대한 관심이 증가하고 있고, 탄소 배출 없는 사회를 실현하기 위한 방법으로, 기업은 공급망 전 영역에서 CO_2 배출을 계산할 뿐 아니라 이를 감소시켜야 한다는 압력을 더 많이 받고 있습니다. 기업은 기업 활동 중 발생하는 CO_2 배출량을 공개하고, 배출량 감소 목표를 설정할 것을 요구받고 있고, 또한 재생 에너지를 적극적으로 도입하여 전력 소비를 100% 재생 에너지로 대체하라고 주장하는 "RE100" 달성 운동이 더욱 가속화되고 있습니다.

이 논문은 탈탄소화와 관련된 사회적 변화, 도시 및 공장 수준에서의 탈탄소화를 위한 Yokogawa의 제안 사례, 그리고 블록체인 기술을 활용하여 공장 내 반도체 생산에서 재생 에너지의 비율을 추적하는 Yokogawa의 노력을 소개합니다.

개요

이산화탄소 (CO₂) 및 기타 온실가스 배출로 인한 기후 변화는 최근 탈탄소화에 대한 관심이 증가하고 있는 이유 중 하나입니다. Japan Meteorological Agency (일본 기상청)에 따르면 20세기 중반부터 시작된 지구온난화는 인간 활동으로 인한 온실가스 배출의 증가로 인한 것으로 판단되고 있습니다⁽¹⁾. 이러한 배경에서 환경 회계와 탄소 발자국 측정의 필요성이 증가하고 있습니다. 재생 에너지를 실현함에 있어 장애 요인 중 하나는 그에 따른 비용이며, 이러한 도전에 대응하기 위해 재생 에너지의 가치를 극대화할 필요가 있습니다.


탈탄소 사회로 나아가는 사회적 추세

일본뿐 아니라 전 세계적으로 탄소 배출량을 줄이려는 노력을 기울이고 있고, 많은 국가가 장기적인 탄소 중립 목표를 설정하고 있습니다 (그림 1). 2050년까지 탄소 중립을 달성하기 위해 일본 정부는 국내 약 12,000개의 기업, 지방 정부 및 공장이 CO_2 를 배출하지 않는 태양광 및 기타 에너지원을 도입하기 위한 목표를 설정하도록 규정하였습니다⁽¹⁾. 이에 더하여 탄소 중립에 대한 노력을 더 잘 이해하기 위해 환경 회계 및 탄소 발자국 시스템에 기초하여 정보를 공유해야 합니다.

과거에는 전력 생산 중 에너지의 가치는 전력량과 가격으로만 평가되었습니다. 그러나 재생 에너지가 도입되면서 기업의 생산 활동으로부터 CO_2 배출을 감소시켜 부가 가치를 추구할 수 있게 되었습니다. 더 나아가 기업이 생산하는 제품별로 감소한 CO_2 배출량을 정량화하여 수치로 공개하는 것 역시 제품의 가치를 높일 방법이 될 수 있을 것입니다.

^{*1} Yokogawa Solution Service Corporation, Energy Storage & Renewable Energy Solution Department, Consulting Center, Solutions Business Headquarters

^{*2} Yokogawa Electric Corporation, DX Design Department, Innovation Center, Marketing Headquarters

그림1 일본 및 기타 국가들의 선언문⁽¹⁾

탈탄소화를 위한 노력의 일환으로 기업들은 공급망 전 영역에서 CO₂ 배출량을 계산하고 감소시켜야 합니다. 공급망의 CO₂ 배출은 세 가지 "범위"로 분류됩니다. 범위 1은 사업 활동으로부터의 직접 배출, 범위 2는 사업 활동과 관련된 열 및 에너지 생산으로부터의 간접 배출, 범위 3은 기타 간접적인 온실가스 배출 (그림 2)입니다. 공급망 배출량을 계산하면 각 범위 별 온실가스 배출량을 자세하게 계산할 수 있을 뿐만 아니라 회사 전체의 배출량을 더 잘 파악할 수 있습니다. 공급망에 대한 정보의 시각화는 기업 내에서 뿐만 아니라 기업 간에 조율하며 노력하게 될 것으로 기대되고 있으며, 이는 탈탄소화를 촉진하기 위한 하나의 관점으로 주목받고 있습니다.

그림2 범위 1, 2 및 3의 공급망 배출

탈탄소화 경영을 향한 Yokogawa의 활동 사례

이러한 배경에서 Yokogawa는 고객에게 에너지 관리 제안을 촉 진하기 위해 노력하고 있습니다.

환경 이니셔티브에 대한 Yokogawa의 제안

Yokogawa는 재생 에너지의 가치를 극대화하는 에너지 관리 시스템에 대한 제안을 추진하고 있습니다 (그림 3). 에너지 관리는 변동하는 재생 에너지의 생산량과 수요를 예측하고, 이러한 예측을 활용하여 배터리 저장을 위한 충방전 계획을 수립하는 것을 포함합니다.

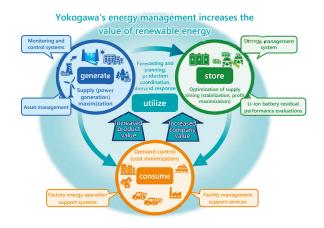
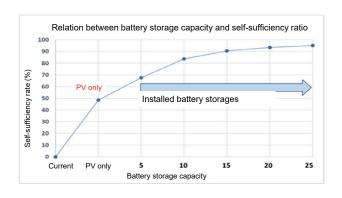



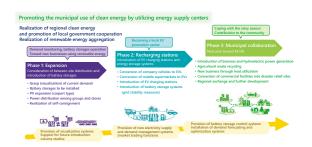
그림3 Yokogawa에서의 에너지 관리 개요

재생 에너지 생산과 배터리 저장 사이의 균형은 재생 에너지 가 치 실현을 극대화하기 위한 또 다른 중요한 요소입니다. 재생 에너지 생산과 수요 간의 불균형은 일부 해결할 수 있지만, 더 많은 재생 에 너지를 생산하거나 배터리 저장 용량을 증가시키는 것만으로는 한계 가 있습니다. 따라서 고객에게 제안할 때는 고객의 전력 수요에 추가 로 설치하게 될 재생 에너지의 생산 및 저장 용량을 신중하게 고려해 야 합니다. Yokogawa는 재생 에너지와 배터리 저장 시설을 고려하는 고객에게 최적의 재생 에너지 생산 및 저장량을 계산할 수 있는 방법 을 제공합니다. 그림 4는 지정된 공급 및 수요 조건 하에서의 도입 효 과 곡선입니다. 재생 에너지 및 배터리 저장과 같은 추가적인 에너지 자원을 도입한 후, 해당 도입의 효과 곡선은 특정 포인트를 통과한 후 안정상태를 유지합니다. 예를 들어 비록 일 년에 몇 번 발생하지 않는 다 할지라도, 태양광 발전량이 낮은 경우를 대비하기 위해 대용량의 배터리 저장 용량이 필요할 수도 있습니다. 이러한 문제를 해결하기 위해. 서로 다른 특성을 가진 에너지 자원을 공동으로 사용하거나 사 이트 간에 공유하는 등의 다른 조치가 필요하고, 이런 사항은 에너지 수요에 대한 상세한 지식을 기반으로 단계적으로 접근할 필요가 있 습니다.

그림4 도입한 재생 에너지 양과 자급자족 비의 관계에 대한 예

실현 시나리오 준비의 필요성

앞 섹션에서는 Yokogawa가 2050년까지 탄소 중립 목표를 실현하는 데 필요한 시나리오를 제안함으로 환경 문제에 대한 점진적 접근의 중요성에 대하여 간략하게 설명하였습니다. 두 번째 섹션에서 언급했듯이 이제 많은 기업들이 자신의 CO₂ 배출량을 공개할 것을 요구받고 있고, 따라서 이들은 CO₂ 제로 배출 목표를 달성하기 위해 단계별 수치 목표를 설정하고 있습니다. 그러나 많은 기업들은 아직도 어떠한 구체적인 노력을 기울여야 할 것인지 확정하지 않은 실정입니다. 어떤 기업들은 어디서부터 시작해야 할지 모르고 있는 것 같습니다. 앞에서 언급한 바와 같이, 단순히 에너지 자원을 증대시키는 것뿐만 아니라 수요를 모니터링하면서 효과적인 단계별 조치를 수립할 필요가 있습니다.


Yokogawa는 최종 목표를 달성하기 위한 구체적인 시나리오를 준비하는데 어려움을 겪는 기업들에게 실현 가능한 시나리오를 제공 합니다. 우리는 각 기업에게 맞춤형 제안을 제시하고, 설치된 재생 에 너지 생산 및 저장에서부터 설치 후 운영까지 전 공정을 지원하는 한 편, 주변 지역의 특성과 전력의 유연성을 고려합니다. 실현 시나리오 를 고려하면서, 우리는 각 업체에게 가장 중요한 요소를 숙고하여 제 안합니다. 다음 섹션에서는 다양한 업체에 대한 예를 설명하겠습니다.

실현 시나리오의 예

a) 사무실 및 상업용 설비

많은 기업과 상업 시설들이 RE100 이니셔티브에 적극적으로 참여하고 있으며, 이는 모든 소비되는 전력을 재생 에너지로 대체하려는 것을 의미합니다. 이런 고객들을 위해 우리는 점진적으로 재생 에너지 비율을 높이는데 있어 필요한 재생 에너지 생산량 및 배터리 저장 용량과 같은 요인에 대하여 보다 구체적인 정량적 수치를 제공하고, 사무실 및 상업 시설 사이의 전력 공유를 통해 재생 에너지 비율을 더욱 높일 수 있는 시나리오를 제안하며 또한 이를 통해 고객의 목표를 달성하기 위한 구체적인 방법을 제시합니다.

그림 5는 상업 시설을 중심으로 클린 에너지를 도모하는 도시 개발을 실현하기 위한 시나리오의 예입니다. 첫 번째 단계에서는 재생 에너지의 도입과 상업 시설내의 연결을 통한 과잉 에너지의 효과적인 활용을 제안하고, 두 번째 단계에서는 과잉 에너지를 전기차에 공급하는 방안을 제안하고 있습니다. 위에서 언급한대로 재생 에너지를 도입한다 하더라도, 배터리 저장만을 통해 상업 시설의 수요와 전력 생산 간의 불균형을 조정하려면 배터리를 과도하게 많이 설치해야 합니다. 따라서 우리는 과잉 에너지를 활용하는 방법을 찾아 이러한 불균형을 해결할 것을 제안하는 바입니다.

그림5 실현 시나리오: 상업 시설을 중심으로 클린 에너지 전환을 도모하는 도시 개발

b) 지방 정부 (지방자치단체)

지방 정부는 자체적인 환경 목표를 달성하는 것 이외에도 지역의 민간 기업이 환경 이니셔티브에 참여하도록 격려해야 합니다. 따라서 Yokogawa는 지역 활성화를 촉진할 뿐 아니라 지역적 특성과 관광을 연계, 산업-정부-민간 협력에 대한 구체적인 제안을 포함하는 재생 에너지 비율 증가에 대한 제안을 추진하고 있습니다. 그림 6은 이에 대한 예를 보여줍니다. 지역마다 다양한 발전 자원과 수요 패턴이 있기 때문에, 이를 개별적으로 고려하여 효율성을 높일 수 있습니다.

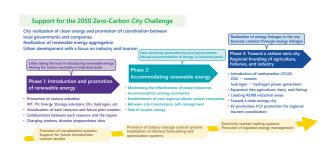


그림6 실현 시나리오: 지방 정부를 통한 지역 경제 활성화

c) 독립적인 마이크로 그리드

대규모 전력망으로부터 격리된 도서지역에서의 전기는 일반적으로 화석 연료를 사용하는 내연 기관 발전기를 사용하여 공급되며, 연료를 먼 지역으로 운송하는 것 역시 전력 생산 비용을 상승시키는 요인이 됩니다. 따라서 대규모 재생 에너지의 도입은 환경에 대한 유해 요인을 줄이고 경제성 및 효율성을 개선하는데 필요한 중요 사항으로 고려되고 있습니다.

그러나 태양광, 풍력 및 기타 재생 에너지원에서의 전력 생산은 기상 조건의 영향을 받기 때문에 안정적인 전력 시스템의 운영을 보장하기 위해 출력 변동 억제 기술이 필요합니다. 이러한 문제를 완화하기 위한 조치의 일환으로 특별히 격리된 도서 지역과 같은 독립적인 전력망에 재생 에너지를 도입하는 것이 매우 중요합니다 (그림 7).

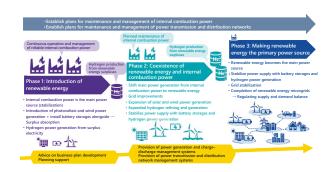


그림7 실현 시나리오: 마이크로 그리드

2050년까지 탄소 중립을 달성한다는 목표를 가지고, Yokogawa 는 2030 회계년도까지 실행해야 할 사항을 실현 시나리오로 제시했습니다⁽²⁾. 핵심적인 개념은 새롭게 도입된 재생 에너지로부터 생산된 과잉 전기를 수소 정제 및 수소 발전에 사용하여 전력 공급을 안정화하고, 점차적으로 내연 기관의 수를 줄여 나가는 것입니다.

이러한 목표를 실현하기 위해, 향상된 상호 연결을 위한 그리드의 강화, 재생 에너지 조절을 위한 전력원의 보장, 그리고 대형 배터리 저장 장치의 개발이 필요합니다. 이를 위해 지방 정부, 전기사업자등의 활동을 적극적으로 지원하고 있으며, 재생 에너지 솔루션의 확대를 위한 시스템과 계획을 어떻게 지원할 수 있을 것인지 숙고하고 있습니다.

d) 공장

미래에는 제조 제품과 관련된 CO_2 배출량을 의무적으로 계산 해야 할 수도 있습니다. 그리고 제품에 대하여 탄소세나 다른 형태의 탄소 관련 가격 정책이 부과될 수도 있기 때문에 재생 에너지 비율이 높아짐에 따라 제품의 부가 가치가 높아질 수도 있습니다. 이를 위해 Yokogawa는 도입된 재생 에너지량을 계산하는 것으로부터 각 제품의 CO_2 배출량을 더 잘 파악하기 위한 다양한 제안을 적극적으로 추진하고 있습니다.

이러한 노력은 본사 내에서도 진행 중이고, 다음 섹션에서 자세 하게 설명하도록 하겠습니다.

탈탄소화를 통한 제품 가치의 상승

위에서 설명한 바와 같이, Yokogawa 그룹은 미래에 CO_2 배출량을 의무적으로 계산해야 할 수도 있고, CO_2 배출량을 감소시키는 것이 제품에 대하여 부가 가치를 부여하게 될 가능성이 있기 때문에 본사는 내부적으로 이에 기초한 에너지 추적 업무를 시연하고 있습니다.

에너지 추적의 필요성

에너지 추적은 소비자가 사용하는 전기가 태양광 발전소와 같은 특정한 전력원에서 공급되었다는 사실을 입증하는 메커니즘입니다. 전기의 원천은 전기 그 자체로는 식별할 수 없습니다. 따라서 소비자는 제로 CO_2 배출의 관점에서 재생 에너지의 값으로부터 전기의 양을 분리하여 손쉽게 자신이 사용한 재생 에너지의 양을 확인할 수 있습니다. 생산된 전기의 양 이외에 전력원의 유형 및 기타 속성 정보를 재생 에너지 값에 추가하여 에너지를 추적합니다. 소비자는 재생 에너지가 중복되어 계산되지 않는다는 사실을 입증해야 하며, 이를 위해 에너지를 추적할 필요가 있습니다.

Yokogawa의 추적 시스템은 공장 및 시설에 설치된 전력 모니터를 사용하여 획득한 전기의 공급 및 수요를 관리하고, 블록 체인은 재생 에너지원으로부터 에너지 값의 이력을 관리합니다. 블록 체인의 기술적 장점은 기록 조작에 대한 높은 안정성, 재생 에너지 값을 보존할 수 있는 능력, 값의 전송 및 중복 계산 방지와 관련하여 투명성을 제공할 수 있는 능력 등이 있습니다.

우리의 시연에 있어 특별한 점은, 전기 이력 정보와 생산 정보를 결합하였고 생산 시설에 있어 재생 에너지 비율의 시각화를 시도하였다는 사실입니다. 그림 8의 개념도에서 확인할 수 있는 바와 같이, 사용자는 이를 통해 특정 시설에서 자체 생성된 재생 에너지의 사용량을 추적할 수 있고, 향후 제품의 CO_2 배출과 관련된 정보를 공개할때, 이에 대한 근거를 제공할 수 있습니다.

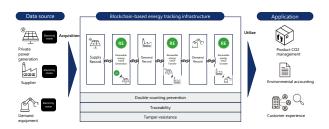


그림8 에너지 추적 개념도

Yokogawa 내부에서의 시연 노력

Yokogawa 본사 공장에 설치된 태양광 발전 시스템을 활용하여 특정 지역 ("minimal fab" 반도체 제조 설비)에서 생산되는 반도체 제 품의 재생 에너지 비율을 높이기 위한 시연 프로그램을 운영하기 시 작하였습니다 (그림 9).

제품 환경 가치에 대한 인식이 높아짐에 따라, 제품 제조 중 발생하는 $\mathrm{CO_2}$ 의 배출은 제품의 가치 평가에 있어 중요한 요소가 될 것으로 생각하는 바입니다.

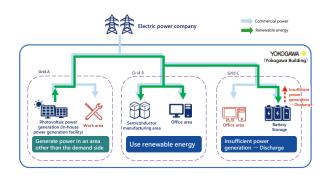


그림9 에너지 추적 사내 시연 시스템

이 시연은 "minimal fab" 지역이 아닌 별도의 그리드에서 생산된 그린 에너지 (태양광 발전)를 사용하고, 블록 체인에 기초한 추적기술을 활용하여 minimal fab 생산용 에너지 중 재생 에너지의 비율을 확인할 수 있습니다. 우리는 태양광 시스템으로부터 생산된 그린에너지와 각 지역의 전력 소비량을 모니터링 하여 생산 공정 정보와함께 minimal fab에 있는 각 장치의 작동 상태를 확인할 수 있습니다. 우리는 각 전력 모니터의 값에서 각 장치 및 반도체 제품의 생산 중재생에너지 비율을 계산할 수 있습니다. 향후 발전량에 대한 예측 값에 기초하여 생산 계획을 최적화하며, 배터리 저장 장치를 사용하여주간에 생산된 과잉 전력은 충전하고 야간에 방출하여 재생 에너지의 사용비율을 더욱 더 높이기 시작하였습니다.

결론

탄소 배출 감소에 대한 중요성을 더 잘 인식하게 되면서, 기업과 지방 정부는 탄소 배출을 줄이기 위한 방안을 고려하기 시작하였습니다. 그러나 이러한 것은 종종 재생 에너지 및 배터리 저장 시스템의 비용뿐 아니라 에너지 자원의 효율적인 활용 등과 같은 문제로 인하여 시나리오를 준비하는데 어려움을 겪고 있습니다. Yokogawa는 탄소 배출 감소 시나리오, 설치한 에너지 자원의 생산량 계산 및 에너지

탄소 배출 없는 사회의 실현에 기여하기 위한 Yokogawa의 노력

자원의 운영이라는 고객의 목표를 위해 고객과 함께 협력하여 탈탄 소화 사회의 실현에 기여하기를 희망하고 있습니다. * All company names, organization names, product names, service names and logos that appear in this paper are either trademarks or registered trademarks of Yokogawa Electric Corporation or their respective holders.

REFERENCES

- (1) Ministry of Economy, Trade and Industry, "Annual Report on Energy in 2020 (Energy White Paper 2021)", 2021 (in Japanese), https:// www.enecho.meti.go.jp/en/category/whitepaper/pdf/2021_outline.pdf (accessed January 18, 2023)
- (2) Yokogawa Electric Corporation, Yokogawa Sustainability Report 2022, 2022, https://web-material3.yokogawa.com/1/15654/tabs/ YOKOGAWA_SUSTAINABILITY_REPORT_2022_E.pdf (accessed January 18, 2023)